Electrical energy production (thermo-mechanically)

VIL	SOLAR CHIMNEY	C = 1 T<150°C P<2 MWa
RR	PARABOLIC TROUGH COLLECTOR	C = 40-80 T<350°C P<50 MWe
Ast	MIRROR RELD COLLECTOR	C = 200-700 T<1500°C P<150 MWe
2.	PARABOLIC DISH COLLECTOR	C = 1000 - 2500 T<2500 °C T P<100 kWth/unit

Solar chimney

Parabolic trough

Mirror field (solar tower)

Parabolic dish

http://www.youtube.com/watch?v=0tWIP OknKQU http://www.youtube.com/watch?v=pTkm TsKLRq0&NR=1&feature=fvwp http://www.gizmag.com/enviromissionsolar-tower-arizona-clean-energyrenewable/19287/

Efficiency about 3%

The **solar chimney** (the **solar updraft tower)** is a renewable-energy power plant for generating electricity from solar power.

Sunshine falling on a greenhouse-like collector structure around the base of a tall chimney heats the air within it. The resulting convection causes air to rise up the tower by the chimney effect (temperature difference generate the air flow).

This air flow drives wind turbines to produce electricity.

Prototype Spain, Manzanares 1982 tower 195 m x Ø10 m area Ø244 m power 50 kW_e greenhouse (75%) The tower failed due to rust and storm winds. The tower blew over and was decommissioned in 1989

Efficiency about 3%

200 MW_e project in Australia (height 1000 m, area Ø7 km)

In 2001, EnviroMission proposed to build a solar updraft tower power generating station known as *Solar Tower Buronga* near Buronga, New South Wales.

The company did not complete the project and now plans a similar plant in Arizona.

http://www.enviromission.com.au./

Concentrators

složený parabolický reflektor (CPC)

Heating up by a concentrator system

Central Pylon

Solar parabolic trough power plants

- Hot oil
- 400°C

Combined with natural gas

- 354 MW_{e} instalation in California (1985)
- 6,5 km² (1kW = 18,5 m²)
- efficiency 5-18% (in dependence on season)

354 MW_p Solar PowerStation in "Mojave desert" in California

THF is synthetic oil heated to over 400 °C steam generation without energy storage Capa at night it can be utilized by burning natural gas

Capacity factor 21%

Solar parabolic through power plants with energy storage

- Hot oil
- 400°C

50 MW plant will have a molten salt thermal storage system containing 28,500 tons of molten salt (60% NaNO₃/ 40% KNO₃), capable of storing heat to generate 750 MWh of electricity — enough to operate at full power for 7.5 hours without sunshine

Property	Solar Salt	Hitec	Hitec XL (Calcium Nitrate Salt)	Therminol VP-1
Composition, %				Diphenyl biphenyl oxide
NaNO ₃	60	7	7	
KNO ₃	40	53	45	
NaNO ₂		40		
Ca(NO ₃) ₂			48	
Freezing Point, C	220	142	120	13
Upper Temperature, C	600	535	500	400
Density @ 300C, kg/m ³	1899	1640	1992	815
Viscosity @ 300C, cp	3.26	3.16	6.37	0.2
Heat capacity @ 300C, J/kg-K	1495	1560	1447	2319

Effective Storage Fluid Cost

Energy storage

$$W_{th} = mc_{th}\Delta T$$

Salt	Temperature Rise	Cost per Kg	Storage Cost		
Salt	°C	\$/kg	\$/kWh _t		
Hitec (a) [142°C]	200	0.93	10.7		
Solar Salt (b) [220°C]	200	0.49	5.8		
Calcium Nitrate	200	1.19	15.2		
[HitecXL] (c) [120°C]	150	1.19	20.1		
	100	1.19	30.0		
Therminol VP-1 (d)	100	2.2	57.5		
-) 7:52 No.12 Nitrate 40 No. Nitrite					

a) 7:53 Na:K Nitrate, 40 Na Nitrite

b) 60:40 Na:K Nitrate

c) 42:15:43 Ca:Na:K Nitrate d) Diphenyl/biphenyl oxide

Fresnel reflectors

the simple line-focus geometry with one axis for tracking

The receiver is stationary and so fluid couplings are not required

Linear Tracking Reflectors

DESERTEC – 400 miliard €

"Solar Tower"

General Description				
Emplacement	Sanlúcar M. (Sevilla), Lat 37.4°, Lon 6.23°			
Nominal Power	11.02MWe			
Tower Height	100m			
Receiver Technology	Saturated Steam			
Receiver Geometry	Cavity180°, 4 Pannels 5m x 12m			
Heliostats	624 @ 121m2			
Thermal Storage Technology	Water/Steam			
Thermal Storage Capacity	15MWh, 50min @ 50% Rate			
Steam Cvcle	40bar 250°C. 2 Pressures			
Bectric Generation	6.3kV, 50Hz-> 66kV, 50Hz			
Land	60Hæ			
Annual Electricity Production	23.0GWh			

Barstow, California (Mojave Desert)

100 MW_e power station project

Design Point:	Equinox, Noon
Maximum Insolation:	920 W/m ³
Net Power:	100 MWe1
Storage (11 hrs):	400 Mahth
Solar Multiple:	2.0
Full Power Operating Time:	3500 h/a


	~~~		-		-	-
DCT - D	1 1 2 2	1.0	10.0	N 7.		
10.00				P 34		<i></i>
	-	_	-		-	

Area: Land Use Factor: Gross Area: Field Type:	
Distance: Towar Height: Heliostat Area:	

1,554 • 10⁶m² 0.2 7,77 • 10⁶m² Surrounding Field 110 to 1700 m 220 m 150 m³ 10,663

#### RECEIVER

Absorber Area:	1885 m ²
Concentration Factor (Avera	age) 480
Max. Flux Intensity:	/50 KW/m*
Average Flux monarcy:	0.95
Max. Thermal Power:	788 MWth
Thermal Heat Losses:	87.9 MW
Inlet Temperature:	360°C
Outlet Temperature:	540°C
Max. Surface Temperature:	609°C
Tube Material:	20-1.5 mm
Number of Tubes:	3,000
Length of Tubes:	90 m
Lambda (fixed):	20 W/mK
STORAGE	
Type:	Cylinder Type
Capacity:	4000 MWb
Molten Salt Mass:	53,4·10°kg
Tank Volume:	28,9.10°m
Dianeter:	34.4 m
reight:	33 m

### Gemasolar (Fuentes de Andalucía, Spain), operates since 2011

185 ha solar field

2650 heliostats, each 120 m²

Tower Height: 140 m

HTF: Molten salts

Receiver Inlet Temp:290°C Receiver Outlet Temp:565°C Temp. Difference: 275°C

Storage Type:2-tank direct Storage Capacity:15 hour(s)

Turbine Capacity: 19.9 MW

Annual equivalent hours = 6,500.

Fossil Backup Type: Natural gas Backup Percentage: 15%

Cost (approx): 230,000,000 Euro



### Stirling engines (www.keveney.com/Vstirling.html)



Mojave Desert, California

(project)

Realized only 1.5 MW pilot project

500 MW (20000 generators) 18,2 km² η_{max} = 29%

### Stirling engines (www.keveney.com/Vstirling.html)



## Comparison of system types

Technology	Cylindrical-parabolic	Tower	Parabolic dish
Nominal thermal efficiency	70%	73%	75%
Power of the installation	80–300 MW _{th}	10–100 MW _{th}	1–100 kW _{th}
Working temperature	270–450°C	450–1,000°C	600–1,200°C
Cost of the solar field	210–250 €/m ^{2 9}	140–220 €/m²	~150 €/m²
Total cost of the investment	2.8–3.5 €/W _e	3–4 €/W _e	10–14 €/W _e

At present, PV systems are cheaper (~  $1.5 \text{ EUR/W}_{p}$ )

**Solar Islands** 

http://www.youtube.com/watch?v=D1XyR3YOVZQ