Grid-off (stand alone) PV systems

Electrical power for remote areas

Grid-off photovoltaic systems

Grid-off PV systems

PV system produces energy when the Sun is shining

The energy produced should be stored for later use

Energy storage type		Storage medium	Storage vessel	Power transformation system
	Potential	Water	Upper and lower basins	Motor-generator driven pump turbine
Mechanical		Compressed air	Air containers	Motor-generator driven compressor turbine
	Kinetic	Rotating mass	Flywheels	Motor-generator
Thermal		Water, solids	Heat containers	Thermal power plant
Chemical	Synthetic fuels	H ₂ , CH ₄ , methanol, etc.	Containers	Combustion motors
	Fuel cells	Synthetic fuel (H ₂ , methanol, etc)	Fuel cell's casing	Electrolyser plus converter
	Secondary batteries	Electrodes – electrolyte systems	Battery casing	Converter
Electrical	Electrostatic field	Electrical charge	Capacitor	Converter
	Electromagnetic field	Moving charge	Superconductive coil	Converter

H₂ Economy Does Not Makes Sense U. Bossel, Proc. IEEE, 94, 1826, Oct. 2006

Most often the energy is stored by charging accumulator batteries

A simple regulator does not usually operate at MPP

The "size" of a PV system means the size of both the generator (PV modules) and the accumulator (batteries or other storage device)

Туре	Voltage (V)	Energy density (Wh/litr)	Energy density (Wh/kilogram)	Lifetime (cycles)
Pb	2,1	70	30	300
NiMH	1,4	240	75	800
LiCoO ₂	3,7	400	150	1000
LiMn ₂ O ₄	4,0	265	120	1000
LiFePO ₄	3,3	220	100	3000

Maximum power point varies with both irradiance and temperature

Maximum Power Point Tracking - MPPT

l∝⊫[A]

The task of MPPT is to track this MPP regardless of weather or load conditions so that the PV system draws maximum power from the solar array.

<u>10</u>00 W/m² 15°C 40°C 75°C 600 W/m² 200 W/m² 0.1 0.2 0.3 0.4 0.50.6 0.7 0 Cell voltage [V] dP/dV = 0Ρ dP/dV > 0MPP dP/dV < 0

V

The MPPT is a nonlinear and time-varying system that has to be solved.

A stand alone photovoltaic system sizing

- 1. Determination of the energy demand and optimisation of the consumption
- Development of the concept: Setting the voltage level and the type of PV system (DC, AC, combined DC and AC, with or without a back-up generator)
- 3. Choice and dimensioning of the system components for power conditioning: Converters to match the power generation and consumption sides are chosen according to the system type
- 4. Sizing the solar generator and the storage battery
- 5. Dimensioning the solar charge controller
- 6. Dimensioning the cables

The size of the PV array is based on mean solar daily radiation (G_{do}), and an argument based on daily energy balance to supply daily load *L*

The generator capacity
$$C_A = \frac{\eta_G A_G G_{do}}{L}$$

 $A_{\rm G}$ and $\eta_{\rm G}$ are the area and conversion efficiency of the PV generator $G_{\rm do}$ is the mean value of the daily irradiation on the surface of the PV field L is the mean value of the daily energy consumed by the load $C_{\rm A}$ depends on the local solar climate conditions

The accumulator capacity, $C_{\rm S}$, is defined as

$$C_{S} = \frac{C_{u}}{L}$$

 $C_{\rm u}$ is the useful energy storage capacity of the accumulator

probability

A time interval of n_{cycle} days when the daily solar radiation is equal to G_{d} , below the average value of G_{do} . During this time interval (or climatic cycle), a part or all of the load demand has to be supplied by the battery.

To maintain a continuous electricity supply to the load, the required battery size C_u in energy units

 $C_A = 1.1$ and $3 \le C_S \le 5$ are common values for rural electrification purposes

 $1.2 \le C_A \le 1.3$ and $5 \le C_S \le 8$ are common ranges on the so-called professional market

The size of battery is connected with a period without sufficient irradiance

15-20 days for northern Europe,

If solar insolation is highly seasonal, the PV array and battery store providing a sufficiently reliable service may be too expensive

A hybrid system with a back - up diesel generator or (and) a wind turbine or (and) a hydropower may be a better option.

